Installation Instructions for:

Round Cover Systems
- S6SB-390
- S6SB-390-CD
- S6SB-390-OD
- S7SB-390
- S7SB-390-CD
- S7SB-390-OD

Square Cover Systems
- S6SB-376
- S6SB-376-CD
- S6SB-376-OD
- S7SB-376
- S7SB-376-CD
- S7SB-376-OD

Self Levelling Adhesive Sealant (Seals gap between corbel & skirt)

40FC Sealant Tubes (x 3)

FC-254 Sealed Dip Cover (For centre dip and offset dip systems only)

Frame

Skirt

Internal Lid (Non-structural)

Hanger (x4)

Guide (x4)

Round Cover
- S7SB and S6SB Systems

Square Cover
- S7SB and S6SB Systems

FL90, FL90-CD or FL90-OD Flat Sealed Cover

FL76, FL76-CD or FL76-OD Flat Sealed Cover

Internal Lid (Non-structural)

Spout

Condensation Bottle

Bottle Carrier

Corbel

S7SB or S6SB Chamber
Remove the manway lid.

Mark out on the base of the sump the internal diameter of the tank neck and the hole pattern ensuring that the facets of the sump are positioned so that all pipe exits are perpendicular to the sump wall. You could use the manway lid or gasket as a template to do this.

Drill the holes in the base of the sump to represent the hole pattern of the manway lid.

Take the following dimensions from the manway lid: Internal diameter of the tank neck and (I/D) and PCD (pitch circle diameter of the holes) and hole size.

NB: It is recommend that the exposed edge of the aperture is sealed with resin

Using a jigsaw cut out the aperture in the base of the sump to represent the internal diameter of the tank neck.

Thoroughly clean the mating faces of the manway lid and manway flange and the underside of the manway flange. Check for any damage and repair as necessary.
If necessary trim the outside and inside diameter of the supplied gasket with a Stanley knife to represent the outside diameter of the manway lid and inside diameter of the tank neck. Using the manway lid as a template mark the position of the hole pattern onto the gasket. Using the supplied 18 mm diameter hole punch and a hammer punch out the required number of holes.

Place the sump onto the gasketed manway flange ensuring that the holes in the sump base align with the holes in the manway flange and that the sump is positioned correctly for the pipe runs.

Position the manway lid on to the gasketed sump base ensuring that the holes in the manway lid align with the holes in the sump based and that the manway lid is positioned correctly for the pipe penetrations.
Fit all the bolts through the holes in the above arrangement: Bolt head to be on the underside of the manway flange with a Dubo sealing washer “sandwiched” between the head of the bolt and the underside of the manway flange (no other washer is to be used at the bolt head or the Dubo washer won’t work). Fit a steel washer and nut on the manway lid side.

Tighten each bolt to 13.5Nm/10lbft torque, employing the following method, to avoid distortion of chamber. As the nuts and bolts are stainless steel “thread galling” maybe experienced. To overcome this we recommend Lubricating the internal and/or external threads. The suggested lubricants should contain substantial amounts of molybdenum disulfide (moly), graphite, mica, or talc. Some proprietary, extreme pressure waxes may also be effective. Slowing down the installation RPM speed will also reduce thread galling.

Starting with any bolt tighten to 7Nm/5lbft torque. Move to the bolt positioned at 180° and tighten to 7Nm/5lbft torque. Move 180° plus one bolt pitch and tighten to 7Nm/5lbft torque. Repeat until all bolts are tightened to 7Nm/5lbft torque. Now repeat the procedure tightening all bolts to 13.5Nm/10lbft torque.

Note: The seal will initially relax and it is an advantage if each bolt is tighten to 13.5Nm/10lbft torque after a period of 24 to 48 hours after initial assembly.

As an added precaution you could also entomb the bolt head and Dubo washer in Soudaflex.
NOTE: When backfilling ensure the pipework is not disturbed.

WARNING: Do not backfill until the sump has been vacuum tested.
The exit position of the pipework through the chamber wall must be as close as possible to 90°. The pipe kit should be fitted so that the pipework is centrally positioned to the seal. When backfilling ensure that the pipework is not disturbed from this central position.

NB: Where appropriate, it is recommended that a drill piloted hole saw be used to cut the pipe/cable seal entry hole in the chamber.

Angles of flexible entry sleeves must not exceed 12° from centre line (24° inclusive angle).

NB: Straps/clips are to be tightened in accordance with the pipe manufacturers recommendation.
NB: Use the correct size drill piloted hole saw for each entry kit. The cable entry seal must be fitted perpendicular to the chamber wall and the conduit must enter the entry kit perfectly aligned. When backfilling ensure the conduit is not disturbed.
PEC KITS
Refer to pipe entry boot instructions on positioning of the hole.

Conduit must be installed at 90° angle to the side wall.

Use Fibrelite entry seal kit model PEC-32 to fit UPP + NUPI 32mm conduit.

PEC-27, PEC-33, PEC-50 to fit metal conduit sizes ¾”, 1” and 1½” respectively.

NB: Use the correct size drill piloted hole saw for each entry kit. The cable entry seal must be fitted perpendicular to the chamber wall and the conduit must enter the entry kit perfectly aligned. When backfilling ensure the conduit is not disturbed.
After penetrations have been fitted, ensure all connections on the manway lid are sealed.

Refer to Vacuum test instructions and perform a vacuum test.

Do not backfill around sump or cut material off the sump until the test has passed successfully.

Note: Sump to be tested to a depth setting of 1.2 meters/12 kPa.

Fix string lines 10mm above grade level across the sump lengths and widths of the tank farm to highlight any falls.

Place the corbel onto the sump (only ‘dry fit’ the corbel do not bond at this stage). Check the measurement from the top of the corbel to the string line, which is set 10mm above the general grade level. Check all sides of the sump and select the largest and smallest measurement to take account of falls across the forecourt.
Round Cover Systems

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. 300mm</td>
<td>No trimming required, corbel can be bonded onto the sump. Adjust frame height using hangers.</td>
</tr>
<tr>
<td>Min. 225mm</td>
<td>Option 1: If by trimming material (max of 100mm) from the corbel turret increases the ‘clearance dimension’ into the 300 - 225mm range then material only needs to be trimmed from the corbel turret and skirt. Trim the skirt so that the overlap between the corbel turret and skirt is between 90 and 120mm. Option 2: If by trimming 100mm from the corbel turret does not bring the ‘clearance dimension’ into the 300 - 225mm range then the remaining material must be removed from the sump. A maximum of 515mm can be removed from the sump. Trim the corbel and skirt as described above in option 1.</td>
</tr>
<tr>
<td>less than 225mm</td>
<td>more than 300mm</td>
</tr>
<tr>
<td>Max. 310mm</td>
<td>No trimming required, corbel can be bonded onto the sump. Adjust frame height using hangers.</td>
</tr>
<tr>
<td>Min. 135mm</td>
<td>Option 1: If by trimming material (max of 150mm) from the corbel turret increases the ‘clearance dimension’ into the 310 - 135mm range then material only needs to be trimmed from the corbel turret and skirt. Trim the skirt so that the overlap between the corbel turret and skirt is between 90 and 120mm. Option 2: If by trimming 150mm from the corbel turret does not bring the ‘clearance dimension’ into the 310 - 135mm range then the remaining material must be removed from the sump. A maximum of 515mm can be removed from the sump. Trim the corbel and skirt as described above in option 1.</td>
</tr>
<tr>
<td>more than 300mm</td>
<td>The burial depth of the tank is greater than the maximum burial depth of the standard system. Bond a 300mm extension onto the sump. Then proceed as above.</td>
</tr>
</tbody>
</table>

Square Cover Systems

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. 310mm</td>
<td>No trimming required, corbel can be bonded onto the sump. Adjust frame height using hangers.</td>
</tr>
<tr>
<td>Min. 135mm</td>
<td>Option 1: If by trimming material (max of 150mm) from the corbel turret increases the ‘clearance dimension’ into the 310 - 135mm range then material only needs to be trimmed from the corbel turret and skirt. Trim the skirt so that the overlap between the corbel turret and skirt is between 90 and 120mm. Option 2: If by trimming 150mm from the corbel turret does not bring the ‘clearance dimension’ into the 310 - 135mm range then the remaining material must be removed from the sump. A maximum of 515mm can be removed from the sump. Trim the corbel and skirt as described above in option 1.</td>
</tr>
<tr>
<td>more than 300mm</td>
<td>The burial depth of the tank is greater than the maximum burial depth of the standard system. Bond a 300mm extension onto the sump. Then proceed as above.</td>
</tr>
</tbody>
</table>

See page 10 for extension bonding instructions.
Before trimming the sump check pipe entry positions allow 50mm from top edge to be able to fit the corbel in position. If necessary cut a smaller amount off the sump height, then cut the remaining material from the corbel and skirt.

Important Note: Trim the corbel and skirt so that the clearance from the top of the frame to the top of the corbel falls in the ranges set out in the charts on the previous page.

Ensure that you have a min overlap of 90mm between the skirt and corbel, to allow space to install the seal kit.

NB. On installations with very high water tables (up to concrete pad) refer to special instructions, overlap increases to 120mm.

WARNING Do not trim sump until sump has been vacuum tested with pipework installed and completed.
Abrade and wipe with a degreasing solvent the chamber top edge / wall and the extension recess shoulder.

To permanently fix the extension, invert the extension and apply a bead of adhesive sealant to the vertical wall of the extension recess.

Position the extensions(s) onto the sump, ensure the extension is horizontal and press down uniformly.

Apply a fillet of adhesive sealant (same nozzle size) to the external horizontal joint and smooth off.
Abrade and wipe with a degreasing solvent the sump or extension top edge/wall and the corbel groove.

Measure distance between opposite walls, this should be 1170mm. If less than this you will need to brace out the sump.

Using wooden batons (1170 ±5mm long) with timber spreader plates (150 x 150) to spread the load, brace out the sump to the correct size.

Repeat this process on all walls to get the correct shape.

Dry fit the corbel on the sump to ensure it fits - push corbel groove onto sump wall. If it does not fit, pipework may have distorted the sump wall shape.

Apply 2 tubes of Soudaflex 40FC sealant in the groove of the corbel. Sealant should fill 1/2 the groove.

Seal around the outside joint and smooth off sealant with soapy water. Use 1.5 tubes of 40FC sealant.
Wait a min of 12 hours before vac testing, preferably overnight to allow sealant to set before vacuum testing. Do not disturb the sump during this time.

Warning:
Test the corbel at a 0.6m depth setting only or irreparable damage may occur.

Refer to vacuum testing instructions for correct method.

Once the corbel test has been performed with a PASS result, the area around the sump can be carefully backfilled with peagravel or sand. Back-fill equally around the sump in layers to prevent damage or deformation.
Fix a string line 10mm above grade level across the sump, fix 4 hangers on the corbel top with base support facing out.

Put the skirt and frame on the hangers.
Locate the 4 foam blocks supplied between the skirt and corbel turret to centralise the skirt about the corbel. Failure to do this may result in the internal lid fouling.

Adjust knobs to set the frame to stringline level, adjust for fall in grade. Set the frame 10mm above grade level.
Ensure the void between corbel and skirt is kept free from concrete and a depth of 90mm overlap minimum is maintained, (120mm on high water table installations).

Ensure foam spacers are in position to locate the skirt centrally around the corbel.

43

44

VERY IMPORTANT

OUTER EDGE “A” OF FRAME SET 5 - 10MM ABOVE GENERAL FORECOURT AREA WITH CONCRETE RAMPED AWAY OVER 300MM.

TYPICAL INSTALLATION

CONCRETE

5 - 10mm

300mm

"A"

500mm

COVER

FRAME

SKIRT

CORBEL

CONCRETE

PEA GRAVEL

Complete backfilling to appropriate level. Frame must be supported by a minimum depth of 200mm of concrete
Concrete ties must be inserted as close to the frame as possible. Minimum block of 500mm square around the frame. Joint must be tied as per diagram. Continuous pour preferred if possible.

Complete other third party equipment installation inside the sump.

45

After minimum concrete cure time, hangers can be removed. Loosen the ‘T’ knob, push down on the rod, turn the rod through 90° and pull rod up to remove.

16 - 18
Ensure void is free of concrete to a depth of 90mm (120mm on a high water table installation).

Insert sand in the void to a depth of 50mm from the top of corbel. Compact the sand.

Drain and bottle should be positioned away from pipe risers and STP. The drain must be installed at the created low point to do this. Compact the sand in a way to create a low point 10-15mm lower than the surrounding sand.

Using a suitable container stir the contents of Pack B and add the entire contents to Pack A to give a combined content of 4.5Ltrs. Ensure white sediment from can B is put into can A before mixing. Stir for a full 5 minutes using a slow speed electric drill (400 - 500 RPM) with a mixer paddle until a completely homogeneous mix is obtained. Take care to avoid including excess air. Mixing is made easier if the Pack B is added and mixed in two stages.

WARNING If white sediment is not added to mixture, or contents are not mixed thoroughly using an electric mixer - the sealant will not set and will need replacing.
1 set of cans A+B will seal 2 sumps. Decant mixture from can A into can B to have more control when pouring the mixture into the void, onto the sand base. Avoid spilling the contents to ensure a clean finish on the side walls of corbel and skirt. The sealant shall be poured to level 30mm below the top edge of the Corbel (the amount of sealant required is dependant on the height of the system but should be between 1.5 and 1.7 Litres).

Mark out the position of 2 No. holes to be drilled 24mm down from the top edge of the corbel and 60mm cross centre. Drill the two Ø7mm holes into the Corbel walls. Mark out the position of the drain hole to align with the hole in the drain spout and drill 1 No. Ø16mm.

Do not install the internal lid until the sealant has set. Wait overnight.

Test completed system.

Warning: Test the corbel at a 0.6m depth setting only or irreparable damage may occur.

When testing at this stage the drain hole which is drilled in the corbel turret must be blanked off to achieve a test.